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ORIGINAL ARTICLE

Failure criterion for timber beams loaded in bending, compression
and shear

T. A. C. M. VAN DER PUT

Faculty of Civil Engineering and Geosciences, Timber Structures and Wood Technology, Delft University of Technology,

PO Box 5048, NL-2600 GA Delft, The Netherlands

Abstract
Based on the elastic�plastic strength calculation, necessary for precise data explanation, a derivation is given of the failure
criterion for combined bending, compression and shear. This exact limit state criterion should replace the unacceptable
unsafe criteria of Eurocode 5 (EN 1995-1-1:2004). It is shown that the principle used thus far, of limited ‘‘flow’’ in axial
compression as a determining failure criterion, for example, predicting no influence of a size effect, does not hold. Instead, it
is derived and confirmed by the data that bending tension failure is always determining, showing the existence of a size
effect, and correction of the existing calculation method is therefore necessary. Because of the primary importance of the size
effect for the strengths, also for combined bending�compression, a simple derivation of the size effect design equations is
given and discussed in an appendix.

Keywords: Combined bending�compression�shear strength, failure criterion, limit analysis, timber.

Introduction

In the 1970s, strength tests at the Delft Stevin

laboratory for combined bending and compression

demonstrated a volume effect leading to a follow-up

programme on semi-full-scale glulam beams with the

theoretically necessary perfect boundary conditions

of the supports. Damage always occurred through

lateral buckling following cracking sounds during

loading and a decrease in the modulus of elasticity

after unloading, even when the test was stopped at

the smallest possible lateral displacements. This

applies even for the most slender beams, applied in

praxis, which were expected to remain elastic,

suitable for further testing of multiload combina-

tions. The theory of elasticity in Chen and Atsuta

(1972) does not show bifurcation for the three-

dimensional lateral buckling case, and the large

displacements analysis (third order theory) shows a

continuous rise in the loading curve. This means

that the top of a loading curve always is due to

damage and failure and therefore elastic buckling

does not exist in praxis for structural elements.

Stability design is a common second order strength

calculation. The solutions of the second order

equilibrium equations have to satisfy the failure

criterion. This failure criterion is therefore essential

and has to be discussed first. As shown in van der

Put (2009), for statically indeterminate structures,

and here, for combined loading, in wood design the

idealized linear elastic calculation applied for failure,

as given by the dashed lines in Figure 1, is not

sufficient to describe and predict strength behaviour

and needs to be replaced by the elastic�plastic

calculation (solid lines in Figure 1). The existing

models and proposed design rules of the Eurocode 5

(2004) therefore have to be corrected in this way. At

the moment three different criteria are prescribed in

the Eurocode for basically the same strength calcula-

tion: n2�m�1 (eq. 6.19), n�m�1 (eq. 6.23) and

m2�n�1 (eq. 6.35), where n and m are the normal-

ized real compression and bending loadings N/Nu

and M/Mu relative to the ultimate compression

strength Nu and bending strength Mu.

This needs to be replaced by one equation of the

real failure criterion (eq. 5), which accounts for the

elastic�plastic behaviour of wood, showing unlimited

plastic flow in compression and brittle-like behaviour
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in tension (thus showing a volume effect for tension).

The hypothesis of limited ultimate strain in compres-

sion followed so far is too conservative and has to be

abandoned. Finite ultimate strain is not a material

property but is caused by instability of the test. Limited

strain was introduced for concrete in the 1960s by the

parabolic stress diagram. It appeared that this diagram

had to be extended by a full plastic range to be able to

describe combined bending�compression failures.

The same applies for steel and wood. The previous

models for wood (e.g. Johns & Buchanan, 1982; Blass,

1987) are based on the principle of limited flow,

leading to inconsistent adaptations that have to be

corrected, especially because the Eurocode and other

standards are based on this invalid restriction.

Derivation of the failure criterion for bending

with compression and shear

The idealized elastic�plastic bending strength beha-

viour of wood (Figure 1), based on plasticity theory,

provides the highest lower bound of the strength of

limit analysis. The description is therefore the closest to

the exact solution and close to the actual behaviour and

measurements, and thus is able to predict behaviour.

The equilibrium equations of this beam with width b

and height h, loaded by a moment M, normal force N

and shear force V are, according to Figure 1:

M

b
�

sc � st

2
(h�x)

�
h

2
�

h � x

3

�
(1)

N

bh
�sc�

st � sc

2

�
1�

x

h

�
(2)

Because the bending tension strength st�ft is nor-

mally higher than the compression strength due to the

volume effect, flow in compression occurs, or sc�fc,

and elimination of x/h from eq. (1) and eq. (2) gives:

6M

bh2
� fc

�
1�

N

bhfc

��
�1 � 3st=fc�4N=bhfc

1 � st=fc

�
(3)

For bending only, when N�0, this is:

sm�
6M

bh2
� fc

3st=fc � 1

st=fc � 1
� fc

3s � 1

s � 1
(4)

where sm is the apparent linear elastic bending stress

(Figure 1) and s�st/fc. For combined compression

bending failure, the tensile strength is reached: st�ft,

sm�fm and s�ft/fc. From eqs (3) and (4) then follows:

6M

fmbh2
�

M

Mu;a

�
�

1�
N

Nu

��
1�

4N=Nu

3s � 1

�
(5)

where Mu,a�fmbh2/6 is the apparent linearized bend-

ing strength and Nu�fcbh is the pure compression

strength. For high values of s (high-quality material),

eq. (5) becomes:

M=Mu;a:1�N=Nu (6)

the failure criterion of most Regulations and also of

the Eurocode, where it applies for columns only. For

s�1.67, eq. (5) becomes:

M=Mu;a�1�(N=Nu)2 (7)

the unsafe criterion of the Eurocode applying there for

beams only.

According to Figure 1, the shear force V for failure

is, when /s?v� f ?v and thus when the apparent

linearized elastic shear stress sv�fv:

Vu�
2

3
f ?v

�
1�

x

h

�
bh�

2

3
fvbh

�
2

3
f ?vbh

2

s � 1

�
1�

N

Nu

�
(8)

when eq. (2) is substituted.

For N�0, the shear strength is Vu�Vu,0 and eq.

(8) can be written:

V

Vu;0

�
�

1�
N

Nu

�
�

M

Mu;a

ac

a
�

M

Mu;a

3h

a
(9)

where a/h�M/Vh is the shear slenderness with a

critical value of:

ac=h�Mu;a=Vu;0h

�sm(bh2=6)=f(2=3)bh2fvg� fm=(4fv) (10)

Equation (9) is a straight line, giving a cut-off of

the parabolic Eurocode criterion eq. (7), as discussed

below, showing also that the critical value of a is ac�3h.

Parameter estimation

As for the discussed models, the data of Johns and

Buchanan (1982) are used here for parameter estima-

tion of eq. (5). Each point of Figures 2�5 represents

test results of 100 boards of 89�140 mm lumber of

Figure 1. Bending and shear stress.
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the spruce�pine�fir species group of grade 2 and

better, kiln dried. The data are given in Figure 2.

Because the nominal scale is not right, only normal-

ized quantities are used. Equation (5) will be written:

m�1�n�
4n � 4n2

3s � 1
(11)

where m�M/Mu,a and n�N/Nu.

Trials show that:

. for the 95th percentile, s�2 and eq. (11)

becomes m�1�0.2n�0.8n2

. for the 50th percentile, s�1.3 and eq. (11)

becomes m�1�0.38n�1.38n2

. for the 5th percentile, s�0.77 and eq. (11)

becomes m�1�2.05n�3.05n2.

The plots of these equations are given in Figures 3�
5, respectively.

A higher value than s�1.3 is necessary to fit the

data for combined bending with tension. The

sketched mean strength line of Figure 2, the para-

bolic failure criterion of the Eurocode 5, shows a

maximum of m of eq. (11) at n�0. Thus:

@m

@n
�

@

@n

�
1�n�

4n � 4n2

3s � 1

�
�

�
�1�

4 � 8n

3s � 1

�
n�0

��1�
4

3s � 1
�0

(12)

giving s�5/3�1.67. A higher value is to be

expected for glulam as follows, from a Delft

students’ project of lateral�torsional buckling by

bending with axial compression on semi-full-scale

beams with perfect boundary conditions. The best

value of s to fit the data of shear failure of beams

and continuous beams (van der Put, 2009) was

Figure 2. Combined bending�compression and bending�tension

strength.

Figure 3. s�2 or 95th percentile of the bending�compression

strength.

Figure 4. s�1.3 or 50th percentile of the bending�compression

strength.

Figure 5. s�0.77 or 5th percentile of the bending�compression

strength.
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s�1.56 for timber and s�2.15 for veneer wood

[laminated veneer lumber (LVL)]. The value of s

(� ft/fc) depends strongly on the wood quality and

moisture content.

Because the specimen compression strength fc and

pure tensile strength ft,p (Figure 2) are also mea-

sured, the volume effect is directly known. For the

50th percentile it is:

s�
ft

fc
�1:3; or

ft

ft;p
�1:3

fc

ft;p
�1:3

143

139
�1:34 (13)

Thus:

fm

ft;p
�

3s � 1

s � 1

fc

ft;p
�

3:9 � 1

2:3

fc

ft;p
�

2:9

2:3

143

139
�1:3 (14)

For any combination of bending and compression the

volume effect factor still is 1.34 (� 1). Here, the proof

is given that bending-tension failure always occurs,

rejecting the current model of only compression

failure by a finite ultimate strain. This applies for

any value of s. For the 5th percentile, s�0.77 and

ft�1.19 ft,p and fm�1.15 ft,p, and for the 95th

percentile, s�2 and ft�1.48 ft,p or fm�1.23 ft,p. For

the Regulations or for design, the failure criterion can

be approximated by two lines (eqs 15 and 16)

according to the dash�dot lines in Figure 6, intersect-

ing at ni�0.5, mi�0.5(3s�1)(3s�1). Thus:

n�1�
3s � 1

3s � 1
m when n]0:5 (15)

m�1�
3s � 3

3s � 1
n when n50:5 (16)

At high shear loading, these lines can be cut off by

eq. (9): n�1�(3a/h)m.

Shear failure mechanisms are discussed in van der

Put (2009). The shear strength Vu here is:

Vu�
2

3
bhfv�

2

3
bhf ?v �

�
1�

x

h

�
�

2

3
bhf ?v

2

s � 1

�
2

3
bhf ?v

2

2:3
(17)

The shear strength is determined by a three-point

bending test with a shear slenderness Mu/Vuh�
a/h�3. Thus:

Mu

Vuh
�

fc(3s � 1)

8f ?v
�

2:9fc

8f ?v
�3 (18)

giving f ?v� fc=8:3 and fv�2f ?v=(s�1)�2fc=(8:3 �2:3)
/� fc=9:5:

For average wood qualities, the shear slenderness

is 3 for failure in shear at the maximum possible

bending strength. It then follows from eq. (9) that

for a/h�3:

n�1�(3h=a) �m�1�m (19)

identical to eq. (6). This is given by the dashed line in

Figure 6. Because the shear strength is usually defined

by the strength of the three-point bending test with

a/h�3, the linear cut-off eq. (6) or (19) applies. To

maintain the parabolic failure criterion, the shear

strength should be restricted to half its strength value.

Then the solid line in Figure 6, n�1�0.5m, applies,

which does not intersect the parabolic criterion any-

where. Because this shear reduction is not applied in

practice and in the Regulations as Eurocode 5, eq. (6)

should be applied as the lower bound failure criterion,

and for stability design, as proposed by van der Put

(1990) for the Eurocode and implemented since then

in the Dutch Code. An other reason to apply this

straight line is that for high-quality timber such as

LVL, s�2, giving the flat curve of Figure 3. This curve

flattens more with higher moisture content (�14%)

and moisture content changes and for smaller dimen-

sions (by the size effect).

Bending curvature

The relation for the radius of bending R follows from

the maximal elastic stresses of Figure 1. Using eq.

(2) with N�0 and eq. (4) the curvature is:

k�
1

R
�

oc � ot

h � x
�

oc(1 � s)

h � x
�

fc(1 � s)

E(h � x)
�

fc(1 � s)2

2Eh

�
2sm

Eh

(1 � s)2

4(3s � 1)

(20)

where s�ot/oc�st/fc�ft/fc.
Figure 6. Interaction curve cut-off (by the dashed shear line) or

no cut-off (by the drawn ultimate shear line).
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To eliminate the varying values of s along the

beam, this can be approximated to:

km�
2sm

Eh

(1 � s)3

4(3s � 1)
�

2sm

Eh

(1 � s)4

4(3s � 1)2

sm

fc

:
2sm

Eh

sm

fc
0:8

�
§

2sm

E?h

�

(21)

giving the curvature in the common elastic plastic

range. At higher values of s, up to s�3, a mean

factor of 0.86 applies according to Table I. In the

elastic range it is km�2sm=(Eh) (52fc=(Eh)):
Thus, the apparent linear elastic modulus of

elasticity E? follows from a reduced modulus by

plastic deformation (Figure 7). When the normal

force is not zero, the derived curvature becomes:

k�km=(1�N=Nu) (22)

Correction of previous approximations

Johns and Buchanan (1982) explained their data of

Figure 2 by elastic tension and elastic�plastic com-

pression behaviour. However, a finite ultimate flow

strain in compression is assumed to exist and the

behaviour therefore remains partly close to elastic,

but may also lead to inconsistencies. For instance,

when a column fails in pure compression reaching

ultimate strain, then rotation of the cross-section is

possible, increasing the external moment by the

eccentricity of the compression load, while the stress

remains fully plastic and the internal moment

remains zero. Thus, equilibrium for this assumed

failure state is not possible. When a beam fails in

pure bending, reaching the ultimate compression

strain, then any additional axial loading will decrease

the bending tension stress, which remains elastic,

and the parameter s�st/fc becomes dependent on

the loading and an arbitrary choice of s becomes

possible for combined loading. This is demonstrated

by the limit flow assumption of Blass (1987). In

this model, not the mean ultimate stress, but the

maximum stress, before the very small yield

drop at the start of flow (Figure 8), is chosen as

ultimate bending compression stress, limiting the

ultimate strain up to this point. Besides the very

low ultimate strain, the ultimate stress value is

questionable because yield drop is not a material

property (van der Put, 1989, 2007), but depends on

the rate of loading, temperature, etc., and on the

total specimen�testing machine stiffness. It only

occurs in a constant strain rate test and thus not in

a constant loading rate test or at dead load failure in

practice. Further, the moment�curvature diagrams

of the model (Figure 8) (of Blass 1987) are also

questionable because of the following: (1) A con-

stant ultimate moment cannot exist at an increasing

Table I. Curvature factor.

S
/ (s � 1)4

4(3s � 1)2

1 1

1.25 0.8

1.5 0.8

1.75 0.8

2 0.8

2.25 0.8

2.5 0.9

2.75 0.9

3 1

Figure 7. Estimation of the reduced modulus of elasticity.

Figure 8. Fictive curvature diagrams (Blass, 1987).
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curvature at flow when the normal force (n�0.7) is

constant because of the increase in the external

moment. (This may only apply for virtual displace-

ments). (2) A decrease in the bending moment at the

increase of the curvature is not possible because for a

constant loading N, the external moment increases

with the increase in deformation and eccentricity, e.

Thus, the decrease by yield drop and stepwise

decrease in stress at high curvatures in Figure 8 are

not possible in a real test (or real simulation) of an

eccentric loaded column.

However, the diagrams serve a useful purpose to

show the model assumptions made by Blass (1987)

for the strength calculation. The dashed line in

Figure 8 intersects the chosen ultimate stress points

(at the start of the yield drop) for the different values

of N, showing that a (non-linear) elastic calculation

of the strength is applied that is linearized by the

applied secant modulus, where M/(1�N/Nu) is

constant. Extrapolated to pure bending strength

Mu,0 (N�0), the found ultimate load criterion

becomes M/(1�N/Nu)�Mu,0 or M=Mu;0:1�
/N=Nu; equal to eq. (6). This quasi-elastic solution,

based on the start of initial flow, is questionable for

real plastic behaviour because it wrongly is based on

the linear proportionality of the curvature with the

bending stress sm, while eq. (21) shows this to be

quadratically proportional with s2
m: The quasi-elastic

equation found by Blass (eq. 6) is therefore far below

the strength data and is modified to:

M

Mu;fic

�
N

Nu

�1 (23)

where Mu,fic is a fictive ultimate bending strength of

60 MPa, to correct the initial flow line to the level of

the measurements. This straight interaction line

(also found by Johns & Buchanan, 1982) is given in

Figure 9 (according to Blass, 1987). For all three

cases, seven, 15 and 30 laminations, it is, when

extended, the same straight line through 35 MPa

compression strength and 60 MPa bending strength.

The model thus fails to give the size effect of bending

with compression and for pure bending where bend-

ing�tension failure is certain. Therefore. because of

the size effect, the factorized pure bending strength

cannot be 60 MPa for the two (15/7) and four (30/7)

times greater depth beams as well. The mean values

applied by Blass of the ultimate compression strength

(35 MPa) and extrapolated pure bending strength

(60 MPa) are deterministic at standard conditions in

the applied regression equations, which explains the

data lying precisely on a straight line. Not 1000

iterations but one calculation estimates this line of

mean values. This also appears to apply for the

(adapted?) 5th percentile line because the data are

exactly on the straight line part and do not show, for

the 1000 iterations, the still necessary variability

around this line.

The empirical eq. (23) can be explained by the

theory (eq. 5), leading to Mu;fic�Mu;a(1�4n=(3s�
1)); showing that in the Blass model 3s�1 is chosen

to be proportional to n as an arbitrary loading-

dependent ultimate tensile stress condition.

For the pure compression strengths, at the com-

pression axis, a volume effect is suggested to exist,

giving in Figure 9 the curved deviations from the

straight line near the compression axis of the seven-,

15- and 30-laminate beams. Partly this is due to the

change from bending failure to pure compression

failure (changing s quickly), but probably is mainly

due to following the curve of Johns and Buchanan

(1982). This apparent volume effect is explained as

follows. The tests of Johns and Buchanan (1982)

were performed on two different pieces of test

equipment, one for pure compression and the other

for combined bending�compression. This caused a

small difference between the measured pure com-

pression strength and the extrapolated compression

strength from the combined bending�compression

test data. This also explains why this assumed (non-

existent) volume effect is in the wrong direction.

Figure 9. Fictive interaction lines (Blass, 1987).
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The departure of Blass (1987) from the straight

model line at lower normal loading also follows the

fit of Johns and Buchanan (1982) for the seven-

laminate beams, suggesting that now the bending�
compression strength is no longer regarded as being

determining for failure, but rather the bending

tensile stress, with fm�48 MPa instead of the

assumed 60 MPa of the straight line of the finite

ultimate compression strain model. According to

the theory, this leads to fm�48� fc(3s�1)=(s�1)�
/35�(3s�1)=(s�1); or s�1.45.

However, the value of s is not constant along the

curve of Blass and thus does not follow Johns and

Buchanan’s fit of the data (with s�1.3), but follows

their sketched parabolic line, leading to a maximum

bending strength at N�0 and thus to the incorrect

value of s�1.67 for this failure criterion, which is

introduced in the Eurocode. The same applies, for

example, for the beam with 30 laminations. This

combined compression�bending strength curve is

also not based on an ultimate bending tension

strength calculation because s never is constant along

the curve and is about 1.55 at the top of the curve,

reducing to below a value of s�1 when N�0,

indicating a very low tensile strength (in disagree-

ment with the applied regression equations). The

contrary is to be expected for laminated wood and

the real curves therefore can be expected to be flat,

like the one in Figure 3.

Because the probability functions of the regression

equation, applied by Blass, do not contain a volume

parameter and therefore his model cannot account

for a size effect, estimation of this effect is necessary.

For comparison, the mean tensile strength of the

standard laminate is given to be 55.4 MPa, but

without specifying dimensions and length belonging

to this strength.

The tensile strengths of the simulation model

beams with the different bending strength values of

about 48, 46.5 and 45 MPa (of Figure 9) can be

verified as follows. According to Figure 9, for

the beams with seven, 15 and 30 laminations, the

coefficient of variation is v7�(48�34)/(1.64 � 48)�
0.178. Thus, 1/k�0.3 � 0.178�0.0534. The coeffi-

cient of variation is v15�(46.5�35)/(1.64 � 46.5)

�0.151. Thus, 1/k�0.3 � 0.15�0.045. The coeffi-

cient of variation is v30�(45�35)/(1.64 � 45)�
0.136. Thus, 1/k�0.3 � 0.136�0.0408. The factor

0.3 follows from the volume effect as follows.

Because the bending strength follows from the

beam dimension L/h�18, at the same width b,

the volume ratio is 18h2
1b=18h2

2b�h2
1=h2

2 and the

strength of the 15-laminate beam with respect to the

seven-laminate beam is (7=15)2av �48�46:5; giving

2a�0.0417/0.15:10.3. The same rounded value of

a follows from the strength of the 30-laminate beam

with respect to the seven-lamella beam according to

(7=30)2av �48�45: This value of a of 0.15 is too low,

far below the values found empirically (see Appen-

dix). This leads to the pure tensile strength of the

beams with seven, 15 and 30 laminations, respec-

tively, according to eq. (a7) of:

ft;p� fm=

�
6(k � 1)2

k � 3

�1=k

�
48

1:285
�

46:5

1:25
�

45

1:22

:37 MPa

Thus, the same tensile strength is predicted for the

seven-, 15- and 30-laminate beams, by lack of the

size effect in the Blass model. This also follows from

eq. (a8) for tests by a constant bending moment

loading over the length, giving a tensile strength of

39 MPa in all cases.

The value of 2a�1.0 (van der Put, 1977) leads, as

a first approximation, to more probable bending

strengths with respect to the value of 48 MPa of the

seven-laminate beams of (7=15)0:15 �48�42:9 MPa

for the 15-laminate beam and (7=30)0:136 �48�39:4
MPa for the 30-laminate beam (applying for stable

tests).

Conclusions

The assumption of the existing models for combined

bending and compression loading, (discussed in the

previous section) that a specific compression strain

limit is determining for failure is shown to be

incorrect. For instance, it predicts from the com-

pression failure that there is no size effect of the

strength. The measurements and theory show that

there always is a size effect at any value of s and for

any load combination because the bending tensile

strength is always greater than the pure tension

strength of the specimen. For this reason, bending

tension failure always occurs, which leads to the

starting point of unlimited flow in compression of

the plasticity approach modified here.

The derived failure criterion for combined bend-

ing with compression is given by eq. (5). This

equation can be approximated to two straight lines

(eqs 15 and 16), providing simple equations for

design and for implementation of the Code.

The derived failure criterion for combined shear

with bending and compression is given by eq. (9).

Because this line will give a cut-off of the ultimate

bending�compression strength lines, this combined

shear strength criterion always has to be checked,

which should be in the Code.

The size effect is lacking throughout the Blass

model, giving questionable predictions of the

strengths and an incorrect form of the interaction

curves. The parabolic failure criterion of the Johns
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and Buchanan and Blass models, applied for Euro-

code 5, is unsafe and denies the strong influence of

quality and moisture content on the form of the

curve (given by the parameter s).

The derived equation (eq. 21) shows the curvature

along the beam to be a quadratic function of the

bending stress sm, instead of a linear function of

sm, as is the incorrect basis of the existing ap-

proaches discussed in the previous section. Equation

(21) provides a simple method for the ultimate

deformation calculation and thus for the ultimate

second order bending moment estimation.
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Appendix: Size effect

The influence of the size effect always has to be regarded in

strength calculations. For the general applicability a simple

derivation of the size effect is given in the following.

The survival probability of a specimen with volume V, loaded by

a constant tensile stress s, as in the standard tensile test, can be

given as function of the stress by:

Ps(V )�exp

�
�

V

V0

�
s

s0

�k�
(a1)

because the power law may represent any function of s around a

stress value.

For a stress distribution eq. (a1) becomes:

Ps(V )�exp

�
�g

V

�
s(x; y; z)

s0

�k

dx�dy�dz=V0

�
(a2)

This specimen has an equal probability of survival as the standard

test specimen eq. (a1) when the exponents are equal, thus when:

g
V

�
s(x; y; z)

s0

�k

dV�
�
ss

s0

�k

Vs (a3)

For the stress distribution, s�sb(1�2y=h)(1�x=a); according

to Figure 10, is:

g
V

�
s(x; y; z)

s0

�k

dxdydz�
ahb

2 gg
�
sb

s0

�
1�

2y

h

��
1�

x

a

��k dx

a

dy2

h

�
ahb

2(1 � k)2

�
sb

s0

�k

(a4)

For the three-point bending test this is twice as high. For the

middle part of the four-point bending test specimen, by the

constant moment:

g
V

�
s(x; y; z)

s0

�k

dxdydz�
ahb

2 gg
�
sb

s0

�
1�

2y

h

��k dy2

h

�
ahb

2(1 � k)

�
sb

s0

�k

(a5)

Thus, for the four-point bending test:

g
V

�
s(x; y; z)

s0

�k

dxdydz�
�
sb

s0

�k� Lbh

3(1 � k)2
�

Lbh

6(1 � k)

�

�
�
sb

s0

�k V (k � 3)

6(k � 1)2
(a6)

where L�3a is the length of the specimen.

According to eqs (a3) and (a6), the bending strength of the

bending tests is:

sb;4

ss

�
�

6(k � 1)2

k � 3

Vs

Vb

�1=k

�
�

6(k � 1)2

k � 3
1:25

�1=k

�
fm

ft;p
(a7)

where Vs/Vb�Ls/Lb, the length ratio, because for all specimens bh

is the same and Ls/Lb�3/2.4�1.25 (tests of Johns & Buchanan,

1982) in this case.

The 900 mm specimens of the compression�bending tests were

loaded by eccentrical compression and thus by a constant moment

along the length. According to eqs (a3) and (a5) the bending

strength (for zero compression) is:

sb

ss

�
�

2(k�1)
Vs

Vb

�1=k

�(2(k�1)3:33)1=k�
fm

ft;p
(a8)

because now Vs/Vb�Ls/Lb�3/0.9�3.33. The nominal length of

the pure tension test specimen was Ls�3 m (Johns & Buchanan,

1982). The value of k is 5�10 for timber, depending on the

coefficient of variation. For k�5, fm/ft,p:2.05, according to both

eqs (a7) and (a8). For k�10, both equations give fm/ft,p:1.54.

Figure 10. Four-point bending test.

48 T. A. C. M. van der Put

D
ow

nl
oa

de
d 

by
 [

T
.A

.C
.M

. V
an

 D
er

 P
ut

] 
at

 1
1:

11
 1

2 
M

ay
 2

01
2 



For glulam k�20 is possible and both equations give fm/ft,p:

1.28. This means that the bending strength, measured in the

four-point bending test, also applies for the 0.9 m short compres-

sion specimens, loaded by a constant moment.

In the derivation above the linearized bending strength is used.

This is possible because the triangle tensile stress area of the real

elastic�plastic stress distribution in Figure 1 is about equal to that

of the linear stress distribution (the dashed line in Figure 1). This

is verified by tests of van der Put (1981), where in this way fm/ft,p:

1.27 was predicted and measured in the four-point bending test,

while fm/ft,p : 2.3 was predicted and 2.2 was measured in the

three-point bending test.

The discussion of the volume effect for combined bending with

tension is not discussed in this article. For low tension, the

equations are the same as for compression, with an opposite sign

for the uniform tensile stress. For high tension the calculation is

according to the theory of elasticity as discussed by Johns and

Buchanan (1982).

The Weibull constant k for brittle failure is given by eq. (a9):

v2�
G(1 � 2=k)

G2(1 � 1=k)
�1 (a9)

where v is the coefficient of variation. Expansion of the gamma

functions shows that k�f(v)/v:1.2/v, where f(v) is a little varying

function around a value of about 1.2 in the range of common

applications. For less brittle failures, as in wood, it is shown

(van der Put, 1971) for specimens of the same form and loading

that:

s

s1

�
�

V1

V

�av

and
v

v1

�
�

V1

V

�b

(a10)

where 0.83]a ]0 and 0]b ]0.5, where (a, b)�(0.83, 0) is

brittle and (a, b)�(0, 0.5) is fully plastic behaviour. For common

tests and large samples of glulam av�0.1. This also depends on

the species and is, for example, av�0.05 for southern pine (AITC

Technical Note 21). Thus, a:1/3 to 2/3. Stable material property

tests of glulam showed for the brittle failure types such as tension,

splitting and shear of European glulam, a�0.5 (van der Put,

1971) was a better value than a�0.15 assumed by Blass (1987).

The value of b is about 0.2.
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